
• Peripheral Devices

• Input-Output Interface

• Asynchronous Data Transfer

• Modes of Transfer

• Priority Interrupt

• Direct Memory Access

• Input-Output Processor

• Serial Communication

INPUT-OUTPUT ORGANIZATION

PERIPHERAL DEVICES

Input Devices

• Keyboard

• Optical input devices

- Card Reader

- Paper Tape Reader

- Bar code reader

- Digitizer

- Optical Mark Reader

• Magnetic Input Devices

- Magnetic Stripe Reader

• Screen Input Devices

- Touch Screen

- Light Pen

- Mouse

• Analog Input Devices

Output Devices

• Card Puncher, Paper Tape Puncher

• CRT

• Printer (Impact, Ink Jet,

Laser, Dot Matrix)

• Plotter

• Analog

• Voice

INPUT/OUTPUT INTERFACE

• Provides a method for transferring information between internal storage and
external I/O devices.

• Peripherals connected to a computer need special communication links for
interfacing them with CPU.

• The purpose of communication link is to resolve the differences between the
computer and peripheral devices.

• The major differences are:

– Peripherals are electromechanical and electromagnetic devices and their manner of operation
is different from the operation of the CPU and memory which are electronic devices.

– The data transfer rate of peripherals is usually slower than the transfer rate of the CPU and
consequently a synchronization mechanism may be needed.

– Data codes and formats in peripherals differ from the word format in the CPU and memory.

– The Operating modes of peripherals are different from each other and each must be controlled
so as not to disturb the operation of other peripherals connected to CPU.

• To resolve these differences computer systems include special hardware
components between CPU and peripherals to supervise and synchronize all
input and output transfers.

• These components are called interface units.

I/O BUS AND INTERFACE MODULES

Each peripheral has an interface module associated with it .
Each peripheral has it’s own controller that operates particular electromechanical
device.
I/O bus from the processor is attached to all peripheral interfaces.
To communicate with a particular device processor places a device address on the
address lines..
Each interface attached to I/O bus contains an address decoder that monitors the
address lines.
When an interface detects its own address it activates the path between bus lines
and device that it controls.

Typical I/O instruction
(Command)

Op. code Device address Function code

I/O bus

display
terminal

Processor

Interface

Keyboard
and Magnetic

tape
Printer

Interface Interface Interface

Data

Address

Control

Magnetic
disk

CONNECTION OF I/O BUS

Connection of I/O Bus to One Interface

Connection of I/O Bus to CPU

I/O
bus

Op.
code

Device
address

Function
code

Accumulator
register

Computer
I/O

control

Sense lines

Data lines

Function code lines

Device address lines

CPU

I/O

bus

Device
address

Command

decoder

Function code

Data lines

Buffer register

Peripheral
register

Status
register

Sense lines

Output

peripheral

device

and

controller

AD = 1101 Interface
Logic

I/O BUS AND MEMORY BUS

• MEMORY BUS is for information transfers between CPU and the MM.

• I/O BUS is for information transfers between CPU & I/O devices
through their I/O interface.

• There are three ways that computer buses can be used to communicate
with memory and I/o:

– Use two separate buses, one for memory and the other for I/O.

– Use one common bus for both memory and I/O but have separate control lines
fro each.

– Use one common bus for memory and I/O with common control lines.

• In the first method computer has independent sets of data, address and
control buses, one for accessing memory and other for I/O. This is done
in computers that provide a separate I/O processor (IOP) in addition to
CPU.

• An interface connected to a peripheral device may have a number of
data registers , a control register, and a status register

• A command is passed to the peripheral by sending to the appropriate
interface register.

• Function code and sense lines are not needed (Transfer of data,
control, and status information is always via the common I/O Bus)

ISOLATED vs MEMORY MAPPED I/O

- Separate I/O read/write control lines in addition to memory read/write
control lines

- Separate (isolated) memory and I/O address spaces

- Distinct input and output instructions

Isolated I/O

Memory-mapped I/O

- A single set of read/write control lines
(no distinction between memory and I/O transfer)

- Memory and I/O addresses share the common address space

-> reduces memory address range available

- No specific input or output instruction

-> The same memory reference instructions can
be used for I/O transfers

- Considerable flexibility in handling I/O operations

I/O INTERFACE

- Information in each port can be assigned a meaning
depending on the mode of operation of the I/O device
→ Port A = Data; Port B = Command; Port C = Status

- CPU initializes(loads) each port by transferring a byte to the Control Register
→ Allows CPU can define the mode of operation of each port
→ Programmable Port: By changing the bits in the control register, it is

possible to change the interface characteristics

CS RS1 RS0 Register selected

0 x x None - data bus in high-impedence
1 0 0 Port A register
1 0 1 Port B register
1 1 0 Control register
1 1 1 Status register

Programmable Interface

Chip select

Register select

Register select

I/O read

I/O write

CS

RS1

RS0

RD

WR

Timing
and

Control

Bus
buffers

Bidirectional
data bus

Port A
register

Port B
register

Control
register

Status
register

I/O data

I/O data

Control

Status

CPU I/O
Device

ASYNCHRONOUS DATA TRANSFER

Synchronous - All devices derive the timing

information from common clock line

Asynchronous - No common clock

Asynchronous data transfer between two independent units requires that
control signals be transmitted between the communicating units to
indicate the time at which data is being transmitted

Strobe pulse
- A strobe pulse is supplied by one unit to indicate

the other unit when the transfer has to occur

Handshaking
- A control signal is accompanied with each data

being transmitted to indicate the presence of data
- The receiving unit responds with another control

signal to acknowledge receipt of the data

Synchronous and Asynchronous Operations

Asynchronous Data Transfer

Two Asynchronous Data Transfer Methods

* Employs a single control line to time each transfer

* The strobe may be activated by either the source or

the destination unit

STROBE CONTROL

Source
unit

Destination
unit

Data bus

Strobe

Data

Strobe

Valid data

Block Diagram

Timing Diagram

Source-Initiated Strobe

for Data Transfer

Source

unit

Destination

unit

Data bus

Strobe

Data

Strobe

Valid data

Block Diagram

Destination-Initiated Strobe

for Data Transfer

Timing Diagram

Valid data

HANDSHAKING

Strobe Methods

Source-Initiated

The source unit that initiates the transfer has
no way of knowing whether the destination unit
has actually received data

Destination-Initiated

The destination unit that initiates the transfer
no way of knowing whether the source has
actually placed the data on the bus

To solve this problem, the HANDSHAKE method
introduces a second control signal to provide a Reply
to the unit that initiates the transfer

SOURCE-INITIATED TRANSFER USING HANDSHAKE

Block Diagram

Timing Diagram

Accept data from bus.
Enable data accepted

Disable data accepted.
Ready to accept data
(initial state).

Sequence of Events
Place data on bus.
Enable data valid.

Source unit Destination unit

Disable data valid.
Invalidate data on bus.

Source
unit

Destination
unit

Data bus

Data accepted

Data bus

Data valid

Valid data

Data valid

Data accepted

unit

•Allows arbitrary delays from one state to the next
•Permits each unit to respond at its own data transfer rate
•The rate of transfer is determined by the slower unit

DESTINATION-INITIATED TRANSFER USING HANDSHAKE

* Handshaking provides a high degree of flexibility and reliability because the
successful completion of a data transfer relies on active participation by both units

* If one unit is faulty, data transfer will not be completed
-> Can be detected by means of a timeout mechanism

Block Diagram

Timing Diagram

Sequence of Events

Place data on bus.
Enable data valid.

Source unit Destination unit

Ready to accept data.
Enable ready for data.

Disable data valid.
Invalidate data on bus
(initial state).

Accept data from bus.
Disable ready for data.

Source
unit

Destination
unit

Data bus

Ready for data

Data valid

Ready for data

Data valid

Data bus
Valid data

ASYNCHRONOUS SERIAL TRANSFER

- Employs special bits which are inserted at both

ends of the character code

- Each character consists of three parts; Start bit; Data bits; Stop bits.

• A transmitted character can be detected by the receiver from knowledge of the

transmitted rules:

•When data are not being sent, the line is kept in the 1-state (idle state)

•The initiation of a character transmission is detected by a Start Bit , which is

always a 0

• The character bits always follow the Start Bit

• After the last character , a Stop Bit is detected when the line returns to the 1-

state for at least 1 bit time

•The receiver knows in advance the transfer rate of the bits and the number of

information bits to expect.

Four Different Types of Transfer

Asynchronous Serial Transfer

bit
(1 bit) (at least 1 bit)

Start Stop
bits

Character bits

1 1 0 0 0 1 0 1

UNIVERSAL ASYNCHRONOUS RECEIVER-TRANSMITTER
- UART -

A typical asynchronous communication interface available as an IC

Transmitter Register
- Accepts a data byte(from CPU) through the data bus
- Transferred to a shift register for serial transmission

Receiver
- Receives serial information into another shift register
- Complete data byte is sent to the receiver register

Status Register Bits
- Used for I/O flags and for recording errors

Control Register Bits
- Define baud rate, no. of bits in each character, whether
to generate and check parity, and no. of stop bits

Chip select

Register select

I/O read

I/O write

CS

RS

RD

WR

Timing

and

Control

Bus

buffers

Bidirectional
data bus

Transmitter
register

Control
register

Status
register

Receiver
register

Shift
register

Transmitter
control

and clock

Receiver
control

and clock

Shift
register

Transmit
data

Transmitter
clock

Receiver
clock

Receive
data

CS RS Oper. Register selected

0 x x None
1 0 WR Transmitter register
1 1 WR Control register
1 0 RD Receiver register
1 1 RD Status register

In
te

rn
a

l
B

u
s

FIRST-IN-FIRST-OUT(FIFO) BUFFER
•Important feature is it can Input the data and output the data at two different rates.

•Output data are always in the same order in which the data entered the buffer.
•Useful in some applications when data is transferred asynchronously
•The following diagrams shows a 4 x 4 FIFO Buffer. It consists of 4-bit registers Ri and
a control registers with flip-flops Fi, associated with each Ri)

4-bit
register

S

R

F

F'

1

1

4-bit
register

S

R

F

F'

2

2

4-bit
register

S

R

F

F'

3

3

4-bit
register

S

R

F

F'

4

4

F

F

S

R

F

F'

S

R

Clock Clock Clock Clock

Data
output

Output
ready

Delete

Data
input

Insert

Input ready

Master clear

R1 R2 R3 R4

Fig: Circuit
diagram of 4x4

FIFO Buffer

MODES OF TRANSFER
•There are 3 different Data Transfer Modes between the central computer (CPU or
memory) and peripherals.
•They are :

1. Program-Controlled I/O
2. Interrupt-initiated I/O
3. Direct Memory Access (DMA)

Fig: Data transfer from I/O device to CPU

CPU

Data bus

Address bus

I/O read

I/O write

Interface

Data register

Status
register F

I/O bus

Data valid

Data accepted

I/O
device

Read status register
Check flag bit

flag

Read data register
Transfer data to memory

Operation
complete?

Continue with
program

= 0

= 1

1

0

Fig: Flowchart for CPU program to input
data

• Programmed I/O operations are result of I/O instructions written in the
computer program.

• Each data item transfer is initiated by an instruction in the program.

• Usually the transfer is to and from a CPU register and peripheral.

• Transferring data under program control requires constant monitoring of
the peripheral by the CPU.

• Once a data transfer is initiated CPU is required to monitor the interface
to see when a transfer can again be made.

• In programmed I/O method CPU stays in a program loop until I/O unit
indicates that it is ready for data transfer. This is time consuming process.

• It can be avoided by using an Interrupt request signal when the data are
available from the device.

• In the meantime CPU can proceed to execute another program.

• In the meanwhile interface keeps monitoring the device. When it
determines that device is ready for data transfer it generates the
interrupt request to the computer.

• Up on detecting the external interrupt signal CPU momentarily
stops the task it is processing, branches to a service program to
process the I/O transfer and then returns to the task it was
originally performing.

• Transfer of data under programmed I/O is between CPU and
peripheral.

• In DMA the interface transfers data into and out of the memory
unit through the memory bus.

• CPU initiates the transfer by supplying the interface with the
starting address and the number of words needed to be
transferred and then proceeds to execute other tasks.

MODES OF TRANSFER - INTERRUPT INITIATED I/O & DMA

DMA (Direct Memory Access)

- Large blocks of data transferred at a high speed to
or from high speed devices, magnetic drums, disks, tapes, etc.

- DMA controller
Interface that provides I/O transfer of data directly
to and from the memory and the I/O device

- CPU initializes the DMA controller by sending a
memory address and the number of words to be transferred

- Actual transfer of data is done directly between
the device and memory through DMA controller
-> Freeing CPU for other tasks

- Polling takes valuable CPU time
- Open communication only when some data has

to be passed -> Interrupt.
- I/O interface, instead of the CPU, monitors the I/O device
- When the interface determines that the I/O device is

ready for data transfer, it generates an Interrupt Request to the CPU
- Upon detecting an interrupt, CPU stops momentarily

the task it is doing, branches to the service routine
to process the data transfer, and then returns to the
task it was performing

Interrupt Initiated I/O

PRIORITY INTERRUPT

Priority Interrupt by Software(Polling)

- Priority is established by the order of polling the devices(interrupt sources)

- Flexible since it is established by software

- Low cost since it needs a very little hardware

- Very slow

Priority Interrupt by Hardware

- Require a priority interrupt manager which accepts

all the interrupt requests to determine the highest priority request

- Fast since identification of the highest priority

interrupt request is identified by the hardware

- Fast since each interrupt source has its own interrupt vector to access

directly to its own service routine

Priority
- Determines which interrupt is to be served first

when two or more requests are made simultaneously
- Also determines which interrupts are permitted to

interrupt the computer while another is being serviced
- Higher priority interrupts can make requests while

servicing a lower priority interrupt

HARDWARE PRIORITY INTERRUPT - DAISY-CHAIN

•A device i.e. Requesting an interrupt and has a 1 in PI input will intercept the
acknowledge signal by placing a 0 n its PO output.
•If the device does not have pending interrupts, it transmits the acknowledge signal to
next device by placing 1 in its PO output. Thus a device with PI=1 and PO=0 is the
one with highest priority i.e. Requesting an interrupt and this device places its VAD on
the data bus.

Device 1

PI PO

Device 2

PI PO

Device 3

PI PO

INT

INTACK

Interrupt request

Interrupt acknowledge

To next
device

CPU

VAD 1 VAD 2 VAD 3

Processor data bus

VAD Vector Address
PI Priority Input
PO Priority Output

One stage of the daisy chain priority arrangement

PI RF PO Enable

0 0 0 0
0 1 0 0
1 0 1 0
1 1 1 1

S

R

Q
Interrupt
request

from device

PI
Priority in

RF

Delay

Vector address

VAD

POPriority out

Interrupt request to CPU

Enable

PARALLEL PRIORITY INTERRUPT

Parallel priority interrupt method uses a register whose bits are set
separately by the interrupt signal from each device.
Priority is established according to the position of the bits in the register.
In addition to the interrupt register the circuit may include mask register
whose purpose is to control the status of each interrupt request.
Mask register can be programmed to disable lower priority interrupts while
a higher priority device is being serviced.
It can also provide a facility that allows high priority device to interrupt CPU
while a lower priority device is being serviced.

IEN Interrupt
Enable
IST Interrupt
Status

Mask
register

INTACK
from CPU

Priority
encoder

I0

I1

I 2

I 3

0

1

2

3

y

x

ISTIEN0

1

2

3

0

0

0

0

0

0

Disk

Printer

Reader

Keyboard

Interrupt register

Enable

Interrupt
to CPU

VAD
to CPU

Bus
Buffer

INTERRUPT PRIORITY ENCODER

•Priority encoder is a circuit that implements the priority function.
•The logic of this priority encoder is such that if two or more inputs arrive at the
same time, then the input having the highest priority will take precedence.
•d in the truth table represents a don’t care conditions. So regardless of other inputs
when the input is 1, the output generates a value xy = 00 (for I0)

Priority Encoder Truth table

1 d d d
0 1 d d
0 0 1 d
0 0 0 1
0 0 0 0

I0 I1 I2 I3

0 0 1
0 1 1
1 0 1
1 1 1
d d 0

x y IST

x = I0' I1'
y = I0' I1 + I0’ I2’

(IST) = I0 + I1 + I2 + I3

Inputs Outputs

Boolean functions

IST Interrupt Status

At the end of each Instruction cycle

- CPU checks IEN and IST

If either is equal to 0 control continues with the next instruction.

if both are equal to 1 CPU goes to an interrupt cycle. During interrupt
cycle CPU performs the following sequence of micro operations.

INTERRUPT CYCLE

SP SP - 1 Decrement stack pointer

M[SP] PC Push Program Counter into stack

INTACK 1 Enable interrupt acknowledge

PC VAD Transfer vector address to PC

IEN 0 Disable further interrupts

Go To Fetch to execute the first instruction

in the interrupt service routine

INTERRUPT SERVICE ROUTINE

Initial and Final Operations
Each interrupt service routine must have an initial and final set of
operations for controlling the registers in the hardware interrupt system

Initial Sequence
[1] Clear lower level Mask register bits.
[2] Clear interrupt status bit IST.
[3] Save contents of processor registers
[4] Set interrupt enable bit IEN.
[5] Go to Interrupt Service Routine

Final Sequence
[1] Clear interrupt enable bit IEN.
[2] Restore contents of processor registers
[3] Clear the bit in the Interrupt register

belonging to source that has been
serviced

[4] Set lower level Mask reg. Bits
[5] Restore return address, IEN <- 1

address Memory

JMP PTR

JMP RDR

JMP KBD

JMP DISK0

1

2

3

I/O service programs

Program to service

magnetic disk

Program to service

line printer

Program to service

character reader

Program to service

keyboard

DISK

PTR

RDR

KBD

255
256

750

256
750

Stack

Main program

current instr.749
KBD
interrupt

2

VAD=00000011 3

4

Disk
interrupt

5

6

7

8

9 10

11

1

DIRECT MEMORY ACCESS

Fig: Block diagram of
DMA controller

Address bus

Data bus

DMA select

Register select

Read

Write

Bus request

Bus grant

Interrupt

DS

RS

RD

WR

BR

BG

Interrupt

Data bus
buffers

Address bus
buffers

Address register

Word count register

Control register

DMA request

DMA acknowledge to I/O device

Control
logic

In
te

rn
a

l
B

u
s

High-impedence
(disabled)

when BG is
enabled

Fig: CPU bus signals for DMA transfer

Address bus

Data bus

Read

Write

ABUS

DBUS

RD

WR

Bus request

Bus granted

BR

BG
CPU }

•Block of data transfer from high speed devices, Drum, Disk, Tape
•DMA controller - Interface which allows I/O transfer directly between memory and
Device, freeing CPU for other tasks.
•CPU initializes DMA Controller by sending starting address of the memory block,
word count (no. of words in memory block), control to specify mode of transfer such
as read or write and a control to start DMA transfer.

DMA I/O OPERATION
Starting an I/O

- CPU executes instruction to
Load Memory Address Register
Load Word Counter
Load Function(Read or Write) to be performed
Issue a GO command

Upon receiving a GO Command DMA performs I/O
operation as follows independently from CPU

Input
[1] Input Device <- R (Read control signal)
[2] Buffer(DMA Controller) <- Input Byte; and

assembles the byte into a word until word is full
[4] M <- memory address, W(Write control signal)
[5] Address Reg <- Address Reg +1; WC(Word Counter) <- WC - 1
[6] If WC = 0, then Interrupt to acknowledge done, else go to [1]

Output
[1] M <- M Address, R

M Address R <- M Address R + 1, WC <- WC - 1
[2] Disassemble the word
[3] Buffer <- One byte; Output Device <- W, for all disassembled bytes
[4] If WC = 0, then Interrupt to acknowledge done, else go to [1]

CYCLE STEALING

While DMA I/O takes place, CPU is also executing instructions

DMA Controller and CPU both access Memory -> Memory Access Conflict

Memory Bus Controller

- Coordinating the activities of all devices requesting memory access
- Priority System

Memory accesses by CPU and DMA Controller are interwoven,
with the top priority given to DMA Controller

-> Cycle Stealing

Cycle Steal

- CPU is usually much faster than I/O(DMA), thus
CPU uses the most of the memory cycles

- DMA Controller steals the memory cycles from CPU
- For those stolen cycles, CPU remains idle
- For those slow CPU, DMA Controller may steal most of the memory

cycles which may cause CPU remain idle long time

DMA TRANSFER

• CPU communicates with the DMA through the address and data
buses as with any interface unit.

• DMA has it’s own address which activates the DS (DMA Select)and
RS (Register Select)lines.

• CPU initializes the DMA through the data bus. Once the DMA
receives the start control command, it can start transfer between
peripheral device and memory.

• When peripheral device sends DMA request , DMA controller
activates the BR(bus request) line informing CPU to relinquish the
buses.

• CPU responds with its BG(bus grant) line informing the DMA that
its buses are disabled.

• DMA then puts the current value of its address register in to the
address bus, initiates the RD or WR signal and sends a DMA
acknowledge to the peripheral device.

DMA TRANSFER

BG

BR

CPU

RD WR Addr Data

Interrupt

Random-access
memory unit (RAM)

RD WR Addr Data

BR

BG

RD WR Addr Data

Interrupt

DS

RS DMA
Controller

I/O
Peripheral

device

DMA request

DMA ack.

Read control

Write control

Data bus

Address bus

Address
select

Note: RD and WR lines in DMA controller are bidirectional.

DMA TRANSFER

• The direction of transfer depends on the status of the BG line.

• When BG = 0 then
– RD and WR are input lines allowing the CPU to communicate with the

internal DMA registers.

• When BG = 1 then
– RD and WR are output lines from the DMA controller to the random access

memory to specify the read or write operation for the data.

• When the peripheral device receives DMA acknowledge, it puts a
word in the data bus (for write) or receives a word from data bus
(for read).

• Thus DMA controls read or write operations and supplies the
address for the memory.

INPUT/OUTPUT PROCESSOR (IOP)
• Instead of having each interface communicate with CPU, a computer

may incorporate one or more external processors and assign them the
task of communicating directly with all I/O devices.

• An IOP can be classified as a processor with direct memory access
capability that communicates with I/O devices.

• IOP is similar to CPU except that it is designed to handle the details of
I/O processing.

• Unlike DMA controller that must be set up entirely by the CPU, IOP can
fetch and execute its own instructions.

• IOP instructions are specifically designed to facilitate I/O transfers.
• In addition IOP can perform other processing tasks like arithmetic, logic,

branching and code translation.
• Block diagram of computer with two processors is shown in fig below:

PD PD PD PD

Peripheral devices

I/O bus

Input-output
processor

(IOP)

Central
processing
unit (CPU)

Memory
unit

M
e

m
o

ry
 B

u
s

CPU-IOP COMMUNICATION

Send instruction
to test IOP.path

If status OK, then send
start I/O instruction

to IOP.

CPU continues with
another program

Transfer status word
to memory

Access memory
for IOP program

Conduct I/O transfers
using DMA;

Prepare status report.

I/O transfer completed;
Interrupt CPU

Request IOP status

Transfer status word
to memory locationCheck status word

for correct transfer.

Continue

CPU operations IOP operations

SERIAL COMMUNICATION
• A data communication processor is an I/O processor that distributes and

collects data from many remote terminals connected through telephone
and other communication lines.

• It is a specialized I/O processor designed to communicate directly with
data communication networks.

• A communication network may consist of any of a wide variety of devices
like printers , interactive display devices , and so on.

• With the use of data communication processor the computer can service
fragments of each network demand in an interspersed (combined)
manner.

• Most significant difference between I/O processor and data
communication processor is in the way the processor communicates with
I/O devices.

• An I/O processor communicates with peripherals through a common I/O
bus i.e. comprised of many data and control lines.

• A data communication processor communicates with each terminal
through a single pair of wires. Both data and control information are
transferred in a serial fashion with the result that transfer rate is much
slower.

SERIAL COMMUNICATION
• The task of data communication processor is to transmit and collect

digital information to and from each terminal.

• Another task is to determine whether the information is data or control
and respond to all requests according to predetermined established
procedures.

• The processor also communicate with CPU and memory in the same
manner as any I/O processor.

• The way the remote terminals are connected to a data communication
processor is through telephone lines or other public or private
communication facilities.

• Since telephone lines were originally designed for voice communication
and computers communicate in terms of digital signals, some form of
converters must be used.

• Converters are called as data sets, acoustic couplers or modems.

• For example a modem converts digital signals into audio tones to be
transmitted over telephone lines and also converts audio tones from
the lines to digital signals for machine use.

SERIAL COMMUNICATION
• A Communication line may be connected to synchronous or asynchronous

interface depending on the transmission method of the remote terminal.
• An asynchronous interface receives serial data with start and stop bits in

each character.
• High speed devices use synchronous transmission to realize the efficient use

of communication links as it does not use start-stop bits to frame characters.
• In synchronous transmission where an entire block of characters is

transmitted, each character has a parity bit for the receiver to check.
• After the entire block is sent the transmitter sends one more character that

constitutes a parity over the length of the message.
• Another method used for checking errors in transmission is the cyclic

redundancy check (CRC).
• Data can be transmitted between two points in three different modes:

– Simplex carries information in one line only
– Half-duplex transmitted information in both directions but one at a time.
– Full-duplex transmitted information in both directions simultaneously.

• Communication lines, modems etc.. used in the transmission of information
between two or more stations is called Data Link.

• The orderly transfer of information in a data link is accomplished by means
of a protocol.

Peripheral Component Interconnect (PCI)

• PCI bus was first introduced in 1992.

• PCI bus supports the functions found on a processor bus but in a
standardized format that is independent of any particular processor.

• Devices connected to PCI bus appear to processor as if they were connected
directly to the processor bus. They are assigned addresses in the memory
address space of the processor.

• PCI follows a sequence of bus standards that were used primarily in IBM
PC’s. Early PC’s used the 8-bit XT bus whose signals closely mimicked those
of Intel's 80x86 processors.

• Later 16-bit bus used on PC, AT computers became known as the ISA bus. It’s
extended 32-bit version is known as the EISA bus.

• PCI was developed as low cost bus that is truly processor independent.

• It’s design expected a rapidly growing demand for bus bandwidth to support
high-speed disks and graphic and video devices.

• An important feature of PCI is a plug-and-play capability for connecting I/O
devices. To connect a new device , user simply connects the device interface
board to the bus

Peripheral Component Interconnect (PCI)

• PCI bus supports three independent address spaces like memory, I/O and
configuration.

• The I/O address space is intended for use with processors, like Pentium
which has separate I/O address space.

• Configuration space is intended to give the PCI it’s plug-and-play capability.

• A 4-bit command that accompanies the address identifies which of these
three spaces is being used in a given data transfer operation.

• The following diagram fig: PCI(1) shows main memory of computer
connected directly to the processor bus.

• An alternative arrangement that is used often with PCI bus is shown in fig:
PCI(2).

• PCI bridge provides a separate physical connection for the main memory.

• It is assumed that the master maintains the address information on the bus
until data transfer is completed.

• But this is not needed becoz address is needed only long enough for the
slave to be selected. slave can store the address in the internal buffer.

Peripheral Component Interconnect (PCI)
• Thus the address is needed on the bus for one clock cycle only, freeing the

address lines to be used for sending data in subsequent clock cycles.

• The result is significant cost reduction because the number of wires on a bus
is an important cost factor.

• This is the approach used in PCI bus.

• At any given time one device is the bus master. It has the right to initiate
data transfers by issuing read and write commands.

• A master is called as initiator in PCI terminology which is either a processor
or a DMA controller.

• The addressed device that responds to the command read and write is called
as target.

Device configuration
• When an I/O device is connected to a computer several actions are needed

to configure both the device and software that communicates with it.

• Once the device is connected, the software

– needs to know the address of the device,

– also need to know relevant device characteristics like speed of transmission
link, whether parity bits are used and so on.

Peripheral Component Interconnect (PCI)

• PCI simplifies this process by incorporating in each I/O device interface a
small configuration ROM memory that stores information about that device.

• The configuration ROM’s of all devices are accessible in the configuration
address space.

• PCI initialization software reads this ROM’s whenever the system is powered
up or reset.

• In each case it finds whether the device is a printer, keyboard, an Ethernet
interface or a disk controller.

• Devices are assigned addresses during the initialization process.

ISA
interface

Processor

SCSI
Controller

Additional
memory

Main
memory

Ethernet
interface

Bridge

Disk 1

Disk
controlle

r

CD-ROM
controlle

r

USB
controller

CD-
ROM

Disk 2

IDE
disk

Video

GameKeyboard

Fig: PCI(1) an example of a computer system using different interface standards

SCSI bus

PCI bus

Processor bus

PCI bus

PCI bridge

Host

Disk

Main
memory

Printer
Ethernet
interface

Fig: PCI(2) use of PCI bus in a computer system

vinayaka
Sticky Note
Peripheral Component Interconnect

Introduction to standard serial
communication

RS-232
• Serial communication is basically the transmission or reception of data

one bit at a time.

• Today's computers generally address data in bytes or some multiple
thereof. A byte contains 8 bits. A bit is basically either a logical 1 or zero.

• DTE stands for Data Terminal Equipment, and DCE stands for Data
Communications Equipment.

• These terms are used to indicate the pin-out for the connectors on a
device and the direction of the signals on the pins.

• computer is a DTE device, while most other devices such as modem and
other serial devices are usually DCE devices.

• RS-232 has been around as a standard for decades as an electrical
interface between DTE and DCE.

• It appears under different forms like RS-232C, RS-232D, V.24, V.28 or
V.10.

• RS-232 is used for asynchronous data transfer as well as synchronous
links such as SDLC, HDLC, Frame Relay and X.25

RS-232
• A typical activity that might use a synchronous protocol would be a

transmission of files from one point to another.

• As each transmission is received, a response is returned indicating
success or the need to resend.

• The term asynchronous is usually used to describe communications in
which data can be transmitted intermittently rather than in a steady
stream.

• For example, a telephone conversation is asynchronous because both
parties can talk whenever they like.

• If the communication were synchronous, each party would be required
to wait a specified interval before speaking.

• RS-232 (Recommended standard-232) is a standard interface approved by
the Electronic Industries Association (EIA) for connecting serial devices.

• In other words, RS-232 is a long established standard that describes the
physical interface and protocol for relatively low-speed serial data
communication between computers and related devices.

RS-232
• RS-232 is the interface that your computer uses to talk to and exchange

data with your modem and other serial devices.

• The serial ports on most computers use a subset of the RS-232C standard.

• RS-232 uses a single ended mode of operation.

• RS-232 supports a maximum cable length of 50feet and a maximum data
rate of 20kbps.

• RS-232 supports a minimum driver output range of ±5V to ±15V and a
maximum driver output range of ±25V.

Limitations of RS-232

• RS-232 has some serious shortcomings as an electrical interface.

– The interface presupposes a common ground between the DTE and DCE.

– A signal on a single line is impossible to screen effectively for noise. By
screening the entire cable one can reduce the influence of outside noise, but
internally generated noise remains a problem.

USB
• Universal Serial Bus originally developed in 1995 by a consortium

including Compaq, HP, Intel, Lucent, Microsoft, and Philips.
• USB is a communications architecture that gives a personal computer the

ability to interconnect a variety of devices using a simple four wire cable.
• The USB is actually a two-wire serial communication link that runs at

either 1.5 or 12 megabits per second.
• USB protocols can configure devices at startup or when they are plugged

in at run time.
• These devices are broken into various device classes. Each device class

defines the common behavior and protocols for devices that serve similar
functions.

• Some examples of USB device classes are shown in the following table:

Device Class Example Device

Display Monitor

Communication Modem

Audio Speakers

Mass Storage Hard Drive

Human Interface Data glove

• USB 1.1 supports both Low-speed devices and Full-speed devices
whose data transfer rates are 1.5Mbps and 12Mbps respectively.

• USB 2.0 supports High-speed devices with data transfer rate up to
480Mbps.
Motivation for USB

• To avoid device-specific interfaces that eliminates large number of
interfaces like PS/2, serial, parallel, monitor, microphone, keyboard,
and so on.

• To avoid installation and configuration problems and to allow hot
attachment of devices.
Advantages of USB

• Power distribution is simple because simple devices can be bus-
powered. E.g. keyboard, floppy disk drives, wireless LAN’s etc..

• Possible to control peripherals because USB allows data to flow in both
directions.

• Also it maintains power conservations because it enters into suspended
state if there is no activity for 3ms.

• Supports CRC for error detection and recovery.

USB

IEEE 1394
• Apple originally developed this standard for high-speed peripherals.

• FireWire is Apple's name for the IEEE 1394 High Speed Serial Bus.

• IEEE 1394 is a serial bus architecture for high-speed data transfer.

• FireWire is a serial bus, meaning that information is transferred one bit
at a time.

• Parallel buses utilize a number of different physical connections, and as
such are usually much less efficient, more costly, and typically heavier .

• FireWire fully supports both isochronous (A sequence of events or if the
events occur regularly, or at equal time intervals) and asynchronous
applications.

• Apple intended FireWire to be a serial replacement for the parallel SCSI
bus while providing connectivity for digital audio and video equipment.

• As of 2007, IEEE 1394 is a composite of four documents: the original
IEEE Std. 1394-1995, the IEEE Std. 1394a-2000 amendment, the IEEE Std.
1394b-2002 amendment, and the IEEE Std. 1394c-2006 amendment.

IEEE 1394
• FireWire can connect up to 63 peripherals in a tree or daisy-chain

topology.

• It allows peer-to-peer device communications such as communication
between a scanner and a printer to take place without using system
memory or the CPU.

• FireWire also supports multiple hosts per bus. It is designed to support
plug and play and hot swapping.

• The copper cable it uses in its most common implementation can be up
to 4.5 meters (15 ft) long and is more flexible than most parallel SCSI
cables.

• FireWire devices implement the ISO/IEC 13213 "configuration ROM"
model for device configuration and identification, to provide plug-and-
play capability.

• FireWire devices are organized at the bus in a tree topology. Each device
has a unique self-id. One of the nodes is elected root node and always
has the highest id.

